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INTRODUCTION

In the application of nonlinear approximation theory it is often the case
that a discrete problem is more difficult to treat than a continuous one.
This is primarily due to the fact that the pertinent discontinuous functions
are elements of the pointwise closure. In this study we will analyze such
functions for several important families. These families, for the continuous
case, were first introduced by Hobby and Rice [I], and were later studied by
de Boor [2], and Barrar and Loeb [3,4].

A typical family to be considered is generated by a function y(t, x) from
T X [0, I] to the reals where T is a subset of the real line. For a fixed positive
integer N, we set

N

F= !f(x) = ~ aiy(ti , x): ai real; ti E T! .
• =1

For a sufficiently dense finite subset of [0, I] we will be interested in examining
the pointwise closure of F, which is an existence set in the sense that each
real-valued function defined on this subset has a closest point in the closure.
Indeed, using difference equation techniques we will be able to explicitly
determine these pointwise closures for such important families as the expo­
nentials and the rational functions generated by the Cauchy Kernel [6]. In
order to simplify notation we restrict ourselves to equally spaced discrete
subsets; i.e., a typical subset is generated by a number h which is the reciprocal
of a positive integer. The subset which is labeled [h] is of the form

[h] = {O, h, 2h, ..., I - h, I}.

We will sometimes call [h] a grid. The results in this paper can be extended
to the unequally spaced case. The later sections of this paper will be devoted
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to the existence question for the continuous case using the Ll' norms
(1 ~ p ~ 00). The discrete analogs of these norms will be employed to settle
this continuous existence question by letting h ->- O.

The following notation will be helpful. If G is any subset of C[O, I], then
G[h] is the set of all such functions restricted to [h]; i.e.,

G[h] = {g: [h] ->- Reals: for some / E G, g(x) = I(x), for x E [h]}.

To analyze the existence problem for families of this type we shall make
several assumptions on y(t, x). Although these assumptions are somewhat
involved to state precisely, the principles behind them are quite natural.

For example, consider a sequence !vex) = r.:l aivy(fiv , x) in F. It may
happen that for some 1, f i • -- 1, i = 1,..., N, where 1 may not be in T if Tis
not compact. (note: 1 = ± 00 is allowed).

Thus, it is necessary to describe the types of limit functions that can arise
when such a situation occurs. The case 1E T has been resolved (see [2] and
Theorem 1).

It is natural to distinguish the case 1E T and 11= T. Moreover, it turns out
to be desirable to classify the points arising in the latter situation. This is done
as follows.

A "regular" point will be one which after a suitable change of variable can
be treated as an element of a new parameter set where the problem is solved
as in the first case. Any point for which this cannot be done will be called
"singular."

Thus, we are led to examine three types of behavior. Assumptions 1 and 2
treat the case 1E T (see Theorem 1), and Assumptions 3 and 4 along with
Definition 1 treat the case 1 fj=. T. A most important feature of these assump­
tions is that the functions arising from these types of behavior are to be
independent of each other in the manner prescribed below. As will be seen,
this allows them to be considered separately.

ASSUMPTION 1. yW(t, x) = (Oi/oti) Yet, x) is continuous/or

(t, x) E T X [0, I] and o5(j 5( N - 1.

ASSUMPTION 2. For h sufficiently small any function of the form

Ie "'i

L I aiiy(i)(ti , x)
i=1 i=1

(1)

where 1:1: I au I > 0 ti E T and L:'=1 (mi + 1) ~ N, is not identically zero
over [h].
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ASSUMPTION 3. If T represents the closure of T, T,...., T consists ofajinite
number ofpoints which are either regular or singular points. The set of regular
points will be labeled R.

To further introduce the concept of a "regular" point before proceeding
with the formal definition, consider the following example. Let Yet, x) =
l/(x + t) where T = (0, (0) (y(t, x) is called the Cauchy kernel). Suppose
that {!vex) = ~~1 (aivl(x + tiJ), K ~ N} is a sequence in F such that
{tiv} - 00 for all i.

We can reparameterize the family F by defining A(t) = lit and defining a
new generating function by <P(A, x) = (1/A) y(l/A, x) = I/(Ax + 1) where
AE (0, (0). Then we can extend the parameter set by defining <P(O, x) =
limA~o <P(A, x) = 1. Under this transformation the sequence !vex) can be
written as L~l (Aivaivl(Aivx + 1)) = ~1 biv<P(Aiv , x) where Aiv - O.

Thus the problem is reduced to a coalescing problem in which the limit
point lies in the parameter set. Parts (c) and (d) below will be verified later
in this paper. Also it will be shown that "0" is a singular point for the Cauchy
kernel.

DEFINITION 1. AtE T ,...., T is called a regular point ifthere is a one-to-one
real-valued function A(t) defined on a neighborhood Wet) of I in Tand a non­
zero real-valued function h(t) defined on the same neighborhood such that if
we define

'P(A, x) = h(t(A)) y(t(A), x)

for t E W(I) (where teA) is the inverse function for A(t)) then over Wet):

(a) limt-->i A(t) = A;
(b) 'P(A, x) can be extended to Aby the formula 'P(A, x) = limA-->.\ 'P(A, x);

(c) at A, (oj/oN) 'P(A, x) == 'P(j)(A, x) is continuous in A and x
(j = 0, 1,... , N - 1) for x E [0, 1];

(d) for sufficiently small h, any function of the form,

m

L aj'P(j)(X, x)
j=O

(2)

where L Iaj I > 0, is not identically zero over [h]. Further over
[h] such a function cannot be expressed as

g(x) + j(x),
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where g E Gj andfis of the form

k m,
L L aijep(j)(lIi , x),
i=l j=O

with IIi E R,...., {X} and L:=l (mi + 1) + (m + 1) ~ N. (When no
confusion arises we call IIi and X regular points.) Here

We further define

(k = 1,... , N),

For example for the Cauchy Kernel H k consists of all polynomials of degree
at most k - 1.

Let S be the complement of T U R in T; that is,

S = T,....,(TU R).

A point of S will be called a singular point and we further assume the
folllowing.

ASSUMPTION 4. For small h, if a sequence {L:=l aivy(tiv , x)} C F[h]
converges pointwise to a nonzero function fs(x) over [h] where limV4<X> tiv = ti E S
{i = 1"00' I ~ N} then fs(x) cannot be expressed as g + h where g E Gj[h],
hE Hk[h] andj + k ~ N.

We will call such afs(x) a singular function on the grid [h].

DISCRETE ApPROXIMATION

We will need the following Theorem which is a slight variation of a result
proved in [2].

THEOREM 1. Consider any norm on GN which is dominated by the uniform
norm. Then if the sequence {f,,(x) - L:=1 aivy(tiv , x)} C F is bounded in this
norm where limv4<x> tiv = t E T (i = 1,..., k) then there is a subsequence which
converges in the uniform norm to an element of the form

k-1

L aiylil(t, x).
i-O
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(Here by a norm II lion GNwe mean it is a semi-norm over qo, 1] and has the
property that for any nonzero g E GN II g II > 0.)

COROLLARY 1. For h small enough, any norm on the space of all real­
valued functions on [h] has the property: If the sequence

)f,,(x) == ±aivy(tiv , x)! C F
,~1

is bounded in this norm where limv~oo tiv = t E T (i = 1,... , k) then there is a
subsequence with converges in the continuous uniform norm to an element of
the form

k-1

L aiy(i)(t, x).
i=O

Proof By Assumption 2 we infer that for small h, this discrete norm
is also a norm over GN . The uniform norm over GN[h] is dominated by the
uniform norm over GN • Since all finite dimensional norms are equivalent the
the result follows from Theorem 1. •

Remark. Corollary 1 is still valid if the limit point is in R. For if we
consider a bounded sequence {L::1 aivy(tiv , x)} C F[h] where limv~oo tiv = t E R
(i = 1,... , m) then in the notation of Definition 1,

m m

L aivy(tiv, x) = L bivrpU1iv , x).
i~l i~l

Here

rp(Aiv, x) = h(t(Aiv)) y(t(Aiv), x),

biv = aivlh(t(A;v))'

The result follows as in Corollary 1 by considering the sequence

where limv~oo Aiv = X(i = 1,... , m) and X= A(l).
If F[h] is the pointwise closure of F[h] the following result holds.

THEOREM 2. For small h

F[h] = {f: [h] -+ Reals: f = g + h + fs ; g E G;[h]; h E Hk[h];
fs is of the form generated in Assumption 4 with (3)
parameter 1; j + k + 1~ N}
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Proof Let (!vex) = g.(x) + hv(x) + vv(x)} be a sequence in F[h] which
converges pointwise to I(x). Here

j

g.(x) = L aivy(tiv , x),
i=1

k

h.(x) = L bivy(tL ' x),
i~1

1

v.(x) = L civy(t;v ' x),
i~1

lim tiv = ti E T;
.....ex>

lim ( = t.' E R;
JI--H.o ~v 't

11m t~ = t" E S.
p--HO til i

Consider any norm on {f: [h] - Reals}. (yVe assume of course that h is small
enough so that the assumptions on the family are valid.) We claim each
sequence {gv}, {hv} and {vv} is bounded in norm. If not by dividing each Iv
by max{11 gv II, II hv II, II VV II} we can assume that 1I.f.1I- 0 and

max{11 gv II, II hv II, II VV II} = 1.

By going to a subsequence, which is not relabeled, it can be assumed that
one of the three sequences say {gv} has the property II gv II = 1 for all v. By
going to a subsequence again and using Theorem·l and its corollary several
times, it follows that gv - g E Gj[h] where II g II = 1. In addition by the
remark after Theorem 1 it can be assumed that h. - h E Hk[h]. Finally by
the compactness of bounded functions over [h], the condition that Vv - Is,
where Is is of the form generated in Assumption 4, can be secured. Clearly,
over [h]

O=g+h+ls,

with II g II = 1. By Assumption 41s = O. But then g + h = 0 with II g II = 1
which contradicts Assumption 3. Therefore the three sequences {gv}, {hv}, {vv}
are bounded. The techniques needed to show that the right hand side of (3)
is a subset of F[h] is then obvious. The reverse containment is easily shown
using the theory of differences [9]. •

~e now apply Theorem 2 to several examples and explicitly determine
F[h] for these examples. Let

yet, x) = et", and T = (-OJ, OJ).

We shall show for sufficiently small h, the pointwise closure over [h] of all
functions of the form,

N

" a·et ,,,,L..' ,
i=1
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consists of all functions which can be expressed as,

r mi

L L bijxjeAi '" + f(x).
i~1 ;=0

371

Heref(x) is an arbitrary real-valued function on the grid [h) which vanishes
on the subset, {kh, (k + l)h, ... , 1 - (m + I)h, I - mh}, where

r

L (mi + 1) + k + m ~ N.
i~1

Use will be made of the classical result that any exponential of the form

k

" a·eAi'"L... ,
i=1

k

where L Iai I > 0,
i~1

(4)

has at most k - 1 zeros [8]. We assume for the remainder of the discussion
on the exponentials that [h) contains at least 3N points. Then, clearly
Assumptions 1 and 2 are valid. The claim is made that both ± 00 are singular
points. This can be seen by looking at the sequences {en",; n = 1, 2,...} and
{e-n",; n = 1, 2,...}. In order to verify Assumptions 4 and to describe F[h]
we require several lemmas.

LEMMA 1. Let {fv(x) = L':1 aivetiV"'} CF[h] converge pointwise to f(x)
over [h) where m ~ N and limv~", tiv = 00 (i = 1,... , m). Then fez) = °for
z ~ 1 - mh and z E [h).

Proof Let E be the forward shift operator associated with h; that is,

(Eg)(x) = g(x + h).

If I is the identity operator then it follows easily from the commuting
properties of these operators that for z E [h) and z ~ 1 - mh,

m

IT (E - ehtiVI)fv(z) = 0,
i~1

Dividing both sides of (5) by n:l eMiV,

v = 1,2,.... (5)

m

IT (EjehtiV) - I)fv(z) = 0.
i~1

Letting v -- 00 in (6) we find

fez) = 0.

This concludes the proof.

(6)

•
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LEMMA 2. Let {fv(x) = ~:l aivet;vx} C F[h] converge pointwise to f(x) over
[h] where limV400 tiv = -00 (i = 1,..., m) and m ~ N. Then fez) = 0 for
Z E [h] and z ;?: mho

Proof. Consider such a z. As before

m

TI (E - ehtivI) fv(ZI) = 0,
i=l

where Zl = Z - mho Letting v -+ 00 it follows that

that is fez) = o.
We claim that any real-valued function on [h] which vanishes on

[h] ,...., {O, h, ... , (m - l)h}

is the pointwise limit of a sequence of the form,

lfv(x) = t atvet;v"'; lim tiv = - 00; i = I, ... , mi.
{ i=l V-7CQ ~

•

LEMMA 3. Let {bl ,..., bm} be a set of m real numbers. There is a sequence

such thatfv((i - l)h) = bi (i = 1,... , m) andfv(z) --+ Ofor

Z E [h] ,...., {O,... , (m - l)h}.

Proof. Select for each v a set of m distinct numbers {tlv ,... , tmv} such that
1imv4oo tiv = -00 (i = 1,... , m). It is well known [8] that for each v,

forms a mth order Chebyshev system. Hence for each v, there is a set of m
real numbers {alv , ••• , amy} such that

m

fv(x) = L aivetivx
i=l

has the propertyfv((i -1)h) = bi (i = 1,..., m). For ZE [h] ,....,{O,h,... , (m-l)h}
using the same reasoning as in Lemma 2 it follows that limV400 fv(z) = O. •

Clearly then the following result is also valid.
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LEMMA 4. Let {b i , ... , bm} be a set of m real numbers. Then there is a
sequence

such thatJ.,(1 - (m - j)h) = b; (j = I,... , m) andfor Z E [h] '" {I - (m - I)h,
I - (m - 2)h, ..., I},

limJ.,(z) = O.
v->oo

Remark. From Lemmas I and 2 it follows that if the sequence

19vCx) = i~ aiveAiV," + it bivetiV'"1

is bounded over [h] where limv->oo .\;v = 00 (i = I, ... , m), limv->oo tiv = -00

(i = I, ... , k) with k + m ~ N, then each of the two sequences

and

is bounded over [h]. (This is a direct consequence of the techniques used in
Theorem 2 and the fact that [h] contains at least 3N elements.) Further we
can infer using the zero properties of an exponential [8] that Assumption 4
holds. Finally from Lemmas 1,2,3,4 and Theorem 2 we conclude

F[h] = {f:f = g + fso + fSI ; g E G;[h];

fso(z) = 0 for z E [h] '" {O, h, ... , (k - I)h};

fSl(Z) = 0 for Z E [h] '" {I - (m - I)h, ..., I};j + k + m ~ N}.

The second family to be analyzed is generated by the Cauchy kernel,

yet, x) = l/(t + x)

where T = (0, (0).
We shall prove that for sufficiently small h, the pointwise closure over [h]

of all functions of the form,

consists of all functions,
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Here the rational function on the right is replaced by an arbitrary number
at x = O. Further ti and 1\ are both greater than zero, r + m ,::;; Nand
k'::;; r.

Assumptions 1 and 2 are satisfied for (llh) ? N; indeed in [6] it is shown
that any function of the form

k m,
L L auy(j)(ti , x),
i=1 j=O

where LL Iau I > 0 and ti E T, has at most Z'=1 (mi + 1) - 1 zeros. r"" T
consists ofthe points {O, oo}. We shall demonstrate later that "0" is a singular

LEMMA 5. "00" is a regular point for the Cauchy Kernel.

Proof Let A(t) = lit and h(t) = t. Then using the notation of Definition 1
with t = 00,

g>("\, x) = l/(h + 1),

and X= limt ...", (lIt) = o. A direct calculation reveals that

g>(0, x) = 1

8
i
g>(,.\, x) I = (-I)j" j
g\j j.X,
uti X=o

j = 1,2,... , N - 1.

By the remark after Corollary 1 and the theory of differences [9],

HN = {p(x): op ,::;; N - I}.

(Here we use the notation; op means the degree of the polynomial p.) Our
calculation reveals that the derivatives of g> are independent over [h] for
(llh) ~ N. Since GN = {q(X)/rC'1 (x + ti), ti E T; oq ,::;; m - 1; m ,::;; N},
GN[h] n HN[h] = {O} for I/h? 2N. Thus Assumption 3 is satisfied and
"00" is a regular point. •

Although the results for the Cauchy Kernel are valid when (1/h) ? N, in
order to simplify the discussion we assume for the remainder of the analysis
of this example that (llh) ? 2N. We now examine the point, "0".

LEMMA 6. Let {!vex) = L:1 ai./(ti• + x); tt. E T; lim....'" ti• = 0; i = 1,... ,
m ,::;; N} be a sequence which converges to I (x) over [h]. Thenfor x E [h] "" {O},

I(x) = p(x)lxm-\

where op ~ m - 2.
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Proof Consider gv(x) = n;:1 (tiv + x)J.,(x) which is a polynomial of
degree at most m - 1. Then for x E [h] ,....., {O} it is well known [9] that

(7)

where E is again the forward shift operator associated with h and I is again
the identity operator. Letting v --+ 00 in (7)

(E _l)mg(x) = O.

where g(x) = xmf(x). Again using a standard result on differences [9], g(x) is
a polynomial of at most degree m - 1. A straightforward argument based
on the fact that {J.,(O)} converges, yields the result that g(O) = O. For
x E [h] ~ {O} thenf(x) = p(x)jxm- I where op ~ m - 2. •

LEMMA 7. For a given polynomial p of degree at most m - 2 (where
m ~ N) and a real number bo , there is a sequence

IJ.,(x) = I: +a;v ; ti E T; lim tiv = 0, i = 1,... , ml
( ;=1 x tiv v-->oo I

such that over [h]

limJ.,(x) = f(x),v-->oo

where f(O) = bo and f(x) = p(x)jxm- 1for x E [h] ,....., {O}.

Proof For each v, select 0 < tlv < t2v < ... < tmv such that limv_ oo t;v = 0
(i = 1,..., m). Select m - 1 distinct points {Xl"'" Xm-1} C [h] ,....., {O}. p(x) is
uniquely determined by the values b; it takes on at Xi (i = 1,..., m - 1).
Now since {lj(x + tiv),"" (ljx + tmv)} for each v is a m-th order Chebyshev
system [6], choose {alv ,..., amv} so that

J.,(x) = i~ X ~v tiv

has the properties,

J.,(O) = bo ,

!v(Xi) = Xibi!rr (Xi + tiv),
i=1

Hence,

i = 1,... , m - 1.

f.(x) = p~~1(x)!fi (x + tiJ,
i=I
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m

p;;;~iO) = bo IT liv '
i~l

j = 1,... , m - 1.

Each P~~l is bounded at these m points and limv_oop,<,:'~l(O)= O. Hence by
going to a subsequence we can assume

where

Pm-1(0) = 0,

Pm-1(Xi) = XiP(Xi),

uniformly

i = 1,... , m - 1.

ClearIy,f.,(x) -+ xp(x)jxm = p(x)!xm- 1 for x E [h] ,...." {O}, andf.,(O) -+ bo • •

Remark. It is easy to check using Lemmas 5 and 6 that in order for
Assumption 4 to hold it is sufficient to demonstrate that if the equality

k

p(x)/IT (x + Ii) = q(x)/xm- 1

i=l

is valid over [h],...." {O} where Ii > 0, op ~ (k - 1), k ~ N, and oq ~
m - 2 ~ N - 2, thenp = q =O. But if q =1= 0, xm- 1 must be a factor of q,
a polynomial of at most degree m - 2, a contradiction. Thus Assumption 4
holds and "0" is a singular point.

From Theorem 2 and Lemmas 5, 6, and 7 it follows readily that

\ 1"-1 k

F[h] = lL aixi/n (x + Ii)) + rex); ti > 0, i = 1,... , k;
'=0 ,=1

rex) = q(x)/xm- 1over [h] """'{O}, 8q ~ m - 2; k ~ r; r + m ~ N/.

CONTINUOUS CASE

For any Lv norm 1 ~ p ~ 00 we consider the existence question. For
such a norm II II, where

I1II1 = (( Illpt
v

11111 = max Ij(x)[
a:E[0.1J

for 1 ~ p < 00,

for p = 00,
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we have their discrete analog over [h]; i.e.,
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for p = 00.

( )

l/P

Ilfll[h] = h L I j(x)\P
XE[h]

Ilfll[h] = max I j(x)1
"'E[h]

for 1 ~p < 00;

Note that in order to avoid some messy notation in our previous dicussion
we have used both the point 0 and 1 in defining the L p norms. For any
subset J of [0, 1] we define

11 fll[h]I'"'IJ = II g II[h]

with g(x) = I(x) . X(x) where X is the characteristic function associated with
the set J. We need one further assumption to allow us to proceed from the
discrete problem to the continuous problem.

As will be seen in the proof of Theorem 4, in going to the continuous case,
we need not consider singular functions directly, but need only consider
sequences in F of the sort/v(x) + vv(x) where every parameter sequence {Ajv}
involved in /vex) converges to some point Aj E T u R while every parameter
sequence {tiv} involved in v.(x) converges to some point ti E S.

Assumptions 5 below states that as we pass to the limit the contributions
of any singular functions (represented by the v:s) will disappear.

ASSUMPTION 5. For any sequence of equally spaced grids

{[hvl: lim hv = O}
v->ro

k
and any sequence {vv(x) = Li=l aivy(tiv , x)} C F where

(a) limv->ro tiv = ti E S, i = 1,..., k ~ N,

(b) II vv II[h] ~ Kfor all v,
v

the following are valid.

There are subsequences (which we do not relabel) and a sequence ofclosed
sets {Fj} with the properties:

(1) Each Fj is the union ofa finite number ofclosed intervals.

(2) Fj C Fj+1 C [0, l]for allj.

(3) The complement in [0, 1] of U~=lFj has measure zero.

(4) For each j, limv->ro II Vv IIF l'"'I[h] = O.
I v

THEOREM 3. Consider a sequence offunctions {gv} of the form

gv =/v + vv (8)
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with gv E F[hvl and hv ---.... 0 with the properties:

(a) Iv(x) = I::=l aivy(ti. , x) where ti• ---.... ti ET uRi = 1,... , k ~ N.

(b) The sequence {v.} is 01 the lorm described in Assumption 5.

(c) For all v, II g. llrk ] ~ K.•
Then the two sequences {111v IIrk ]} and {II v. Ilrk ]} are each bounded.

v •

Proof Assume to the contrary. It is easy to check using the triangle
inequality that this implies that the sequence {1I1v IIrk l} is unbounded. Hence
by dividing both sides of (8) by IIIv IIrk

v
] , it can be assu"med that limy II g. IIrk.] =

0; IIIv IIrk 1 = 1, and limy II Vv Ilrk ] = 1. Using Corollary 1 and the remark
following, we infer that Iv ---.... I i~ the uniform norm over [0, 1]. (Here again
we do not relabel subsequences.) Using the standard properties of the
Riemann Integral for 1 ~ P < 00, we find for all I ~ p ~ 00 that
lim. III -Iv 11---.... 0 with 11/11 = I. Now applying Assumption 5 it follows that
a subsequence of the {vv) and a sequence of closed sets {Fi } satisfying proper­
ties 1, 2, and 3 of Assumption 5 exist so that for eachj

lim II VV IIFnrk] = 0.
v~::o J v

(Again we do not relabel subsequences.) Select an Fk such that

where 1IIIIF
k

= II xiII with X being the characteristic function of Fk • Since
IIIv + Vv Ilrk) ---.... 0 and

by going to the limit we reach the contradiction that

o~ n: - 0> 0.

Hence the two sequences are bounded. •
Consider any p(x) E qo, 1]. We shall show that in the continuous norm

over [0, 1] p(x) has a closest point from the set

Further our proof will demonstrate F is the uniform closure of F as follows.
From the theory of differences [9], we can deduce that F is a subset of the
uniform closure of F. Our existence proof will yield the reverse inclusion.
For p E L/I[O, I] (1 ~ P ~ (0) our methods can be used also to prove existen-
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ces. This is accomplished by noting the step functions are dense in Lp[O, 1] and
defining p correctly on a set of measure zero.

THEOREM 4. For each p(x) E qo, 1], there is afEF such that

II p -fll = distance(p, F) === inf{11 p - gil: g EF}.

Here II II is the L p norm for 1 :C p :C 00.

Proof. Consider a sequence of grids {[hvl} such that h. - O. Let g. be the
best approximation to p from F[hvl; i.e.,

II p - g.l\[h.] = inf{11 p - g II[h.] : g EF[h.]}.

Since F[h] is the closure of F[h] there is for each v a function t. E F[hv] of the
form

tlx) = /,,(x) + v.(x)

withf.. and v. having properties (a) and (b) respectively of the hypotheses of
Theorem 3. Further,

II p - t.ll[h.] :C II p - g.ll[h.] + ~ .
For any g EF,

II p - t. U[h.] + ~ :C II p - g II[h.] ,

lim II p - gII[h ] = II p - gil·
V-ioOO I"

Since II p II[h ] -II p II in addition it then follows that the sequence {II t. lI[h ]}
• v

is bounded. By Theorem 3 then each of the sequences {II/" II[h]} and {II VV 1I[1I]}
v v

is bounded. Now applying the techniques of Theorem 3 we infer (again not
relabelling subsequences) that for a sequence of closed sets {Jk } with the
properties assigned in Assumption 5 the following is valid:

For each k, lim II Vy U[h ]nl, = O;/" - fin the uniform norm wherefEF.
V ....H.() II ..

The claim is made that

II p - fll = distance(p, F).

Consider any g EF. For each k,

1
II p - g U[hy] ~ II p - tv 11[lIv] - ;

~ II p - tv U[II.]nJk - ~
1

~ Up - /" II[hy]nJk - II vy II[hy]nJk - -; .
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The left most quantity above converges to II p - g II. The right most quantity
above converges to II p - fllJ . Thus

k

II p - g II ~ II p - fllJk .

Letting k ---+ 00,

lip -gil ~ lip -fll.
Since g was an arbitrary element ofF the proof is complete.

The following result is then clear.
•

COROLLARY 2. Let {[hJ} be a sequence of grids with hv ---+ 0. Let J,,(x) be
the best approximation from F[hJ to g E qo, 1] under the norm II 11th 1 with
J,,(x) having the form v

m m{ k kt

J,,(x) = L L aiivy(i)(tiv , x) + L L biivep(j)(Ai , x)
i=1 j=O i~1 j=O

r

+ fsv(x) + L civy(;)(t;v , x)
j~1

where

lim tiv = ti E RUT,
v

Ai E R,

lim ( = t.' ES
v 3v J

i = 1,... ,m;

i = 1,... , k;

j = 1,... ,r.

fsix) is a singularfunctionfor the grid [hJ.

Then for some subsequence of{J,,} which is not relabeled,

m mi k ffli

L L aijvy(i)(tiv , x) + L L biivep(i)(Ai , x) ---+ I(x) E F.
i~l j=O i=1 j=O

Here I(x) =l(x) +lex) with lex) E Gj, I(x) E H k • Further j + k ,,;;;N and
j < N if Lt.eT (mi + 1) < N, where in both cases the convergence is in the
uniform nor:n over [0, 1]. Finally f is a best approximation to g from F.

In order to establish that Assumption 5 is satisfied for our examples the
following definition will be useful.

DEFINITION 2. A sequence of functions {gv} C C2[0, 1] is said to have
property S where S is some positive integer if d2gvCx)/dx2 ¥= 0 implies
d 2gvCx)/dx2 has at most S zeros.
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Families with this property were introduced in [4]. It can be easily shown
using the techniques developed in that paper that the following theorem is
valid.

THEOREM 5. Consider any sequence {vv} C C2[0, 1] with property S which
in addition are bounded in the II 11[/0 1 where hv -+ 0; i.e., there exists a K > 0

v
such that for all v

Then there exists a sequence of closed sets {Fj } and a subsequence of the {vv}
so that statements 1, 2, and 3 of Assumption 5 are valid for {Fj}. Further there
is a function v so that for each j,

lim max I vvCx) - v(x)I -+ O.
J/-HQ ~EFi

(Again we have not relabeled the subsequence.) In addition each Fj is the union
of at most 3S + 4 disjoint intervals.

Note that the exponential family has property S with S = N - 1. Also the
rational fraction family generated by the Cauchy kernel has property S with
S = 3N-1.

THEOREM 6. The exponential family satisfies Assumption 5.

Proof It suffices to show if

k m

vvCx) = L etiV
'" + L bjvet;V"',

i~1 j=1

where tiv -+ 00, i = 1,..., k; tjv -+ - 00, j = 1,..., m and if F is a subinterval of
[0, 1] with the property that for some v(x)

lim max I vv(x) - v(x)I = o.
).1--)00 ~€F

then v(x) = 0 for x E F "" {O, I}. For such an x, choose h > 0 small enough
so that Xi = (x - ih) EF, i = 1,... , m and Yj - (x + jh) EF (j = 1,..., k).
Then as in Lemmas 1 and 2

Letting v -+ 00 we find

•
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THEOREM 7. The rational fraction family generated by the Cauchy kernel
satisfies Assumption 5.

Proof Let {vvCx) = L:l (aiv/(x + tiv), limv_oo tiv = 0, i = 1,... , N; tiv > O}
be a sequence such that II vv(x)lI[h ] ::(; c for all k where hk --+ O. By using

k

property S there exists a sequence of closed sets {Fk } and a subsequence of the
{vv} which satisfy the conclusion of Theorem 5 with v(x) being the limit
function. Note over each Fk , the appropriate L p norm of v is bounded by c.
Using the ideas of Lemma 6 it follows that

v(x) = p(X)/XN- 1,

where p(x) is a polynomial of at most degree N - 2 over each Fk '" {O}.
Our argument doesn't preclude the possibility that in each of the subintervals
that form F k , p(x) is a different polynomial. We can rule out this possibility
by noting that the number of subintervals which form Fk is bounded by a
number independent of k. Thus for large k; our difference equation
technique allows us to go from one subinterval to the other, thus yielding the
same polynomial. Since v is bounded over each of the Fk in norm by c and
degree of p is less than N - 2 it follows that

if x =1= O.

v(x) = 0

UNIFORM CONVERGENCE AND NORMALITY

•

In this section we show how our difference equation techniques can~be

used to obtain uniform convergence on closed subintervals. Our first result
generalizes a theorem of Schmidt [11], who employed the continuous uniform
norm on the exponential family.

k I'
THEOREM 7. Let {!.(x) = L;=l aivetivx + Li=l bivetivX} be a sequence

where tiv --+ - 00 (i = 1,... , k) and tjv --+ 00 (j = 1,.... I). Suppose there exists
a constant K > 0 and a sequence ofgrids {[hvn on [0, 1] with the property that
hv --+ 0 and 11f., 11[,. ] ::(; K. Then a subsequence of {f.,} converges uniformly to

v
zero on every closed subinterval of (0, 1). Here II II[h] is any discrete £'p norm
on [h] for some fixed p where 1 ::(; p ::(; 00.

Proof Let J be an arbitrary closed subinterval of (0, 1). Now {!.} has
property S with S = k + I - 1, so by Theorem 5 a subsequence can be
extracted (which is not relabeled) and a sequence of closed nested sets {Am}
where Am = U7=1 [aim , bim] = U~~l lim with lim n lkm = cp if j =1= k,
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L ~ 3(k + I - 1) + 4 such that p.(Am) ---+ 1 andlv converges uniformly on
each Am . Furthermore we may assume that

for all m. Choose m so large that

and J C [aIm, bLm]. An arbitrary point x of the open interval (bim , ai+l , m)
can be expressed as the k + 1 member of a uniform grid ofwidth d containing
(l + k + 1) elements where by (8) every element of the grid excluding x is in
Am. Note that since {Iv} converges uniformly on Am if we set

IlfilA = max If(x)1
m a:eAm

the sequence {lllvllA } is bounded. Let E be the shift operator associated with
d and let X o denotemthe first member of the grid which includes x. Then for
each v

k ~n (E - etivdI) n (e-t';VdE - l)lv(xo) = o.
i=1 i=1

This relation can be expressed as

Hk

L (Xi.EiJ.(XO) = 0,
i=1

k+l

I (Xkv 111v(xo+ kd)1 ~ L I (Xiv 111v(xo+ id)l.
i~1

i¢k

As remarked previously, Xo + id E Am if i =I=- k. Hence,

I f(x)1 ~ I flv IIIlviiAm (9)

where I flv I ---+ 0 and flv doesn't depend on x or m. Using the same difference
equation techniques on the points of Am we can show Iv(x) converges
pointwise to zero in the interior of Am. Thus the uniform convergence
on Am and (9) together imply that {Iv} converges uniformly to zero on J. •

COROLLARY 3. Let {Iv(x) = ~1 aivetiV"'} be a sequence in F such that
there exists a constant K > 0 and a sequence of grids {[hvn with the property
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that hv -+ 0 and I/Iv I/r" 1 ~ K. Then there is a subsequence of {I.} converging
to some f E F uniformly on every closed subinterval of (0, 1).

Proof. The corollary easily follows from Theorem 7, Theorem 3, and
Corollary 1 (induding the remark following Corollary 1). •

In [4] it was shown that Theorem 5 was valid for the L p norms (1 ~ p ~ 00).
Hence Theorem 7 is valid for these norms. For our rational functional family
using similar difference equation methods and the standard compactness
properties of rational functions [IO] the following theorem can be readily
established.

THEOREM 8. Let {hex) = 'Z'=l (aivl(tiv + x))} C F where limv~oo tiv = 0
(i = I,... , k). Further there is a sequence of grids {[hvn where hv -+ 0 and
a K ~ 0 such that IIIv I/r" 1~ K. (Here of course we are employing a discrete
L p norm). Then there is ~ subsequence of {Iv} which converges uniformly to
zero on any closed subinterval of (0, I].

This result is also valid for the L p norms (I ~ p ~ 00).

COROLLARY 4. Let {hex) = 'Z'=l (aivlUiv + x))} EF, where limv tiv = 0
i = I, ..., k' ~ k. Further assume there is a sequence ofgrids {[hJ} where hv-+ 0
and a K > 0 such that I/fl/r" 1 ~ K. Then there is a subsequence of{Iv} which
converges uniformly on any closed subinterval of(O, 1] to afunction oftheform,

where ti > 0, m ~ k - k' (in case k = k', the function is identically zero).

Consider any L p norm, II II, (1 ~ p ~ (0) on qo, 1].

DEFINITION. We say agE qo, 1] is normal if any best approximation to
g from F has the form,

m mt

f(x) = I I aiiy(;)(ti ,x),
i=1 ;=0

where L;':,l (m; + 1) = N and a; =Ie 0 (i = 1,..., m).
A consequence of Corollary 2 is the following.

(9)

THEOREM 9. Let g E qo, 1] be normal. Then for sufficiently small h any
best approximation to g over [h] from F[h], using as the norm the discrete
analog of the L p norm, is of the form (9). In addition, if the best approximation
to g from P is unique, let T"g be any best approximation to g from F[h]. Then
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hv -+ 0 implies Tn g converges to f uniformly where f is the continuous best
approximation to ifromF.

Proof. If there is a sequence {hv} -+ 0 such that a best approximation to
g from F[hv] is not of the form (9), then using Corollary 2 we see that a best
approximation to g exists which is not normal, a contradiction. Further
assume the best approximation f, to g is unique. If Tn (g) ~f there is a
subsequence which we do not relabel, such that v

II Tn$ - fll ~ E > 0

for all v. But again by Corollary 2 and the uniqueness off, a subsequence
converges to f, a contradiction. •

A theorem of Hobby and Rice [1] yields the result for both the exponential
and rational function families that 1 < p < 00 and g E L1/[O, 1] '"F imply g
is normal.
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